
1

Inside the Linux Boot Process

Table of Contents

1. Overview ... 2

2. The BIOS Stage : System Startup ... 3

2.1 BIOS runs Power-On Self Test (POST) ... 3

2.2 First available boot device is started .. 3

3. The GRUB Stages ... 4

3.1. Stage 1 : BIOS executes Primary Boot Loader code .. 4

3.2. Stage 1.5 : Opening a Linux partition and read /boot/grub/grub.cnf ... 4

3.3. Stage 2 : Secondary Boot Loader loads kernel and RAMdisk .. 5

4. The Kernel Stage ... 6

4.1 The Kernel boot begins ... 6

4.2 The Kernel starts the first user space application the INIT process .. 7

5. Init ... 8

6. Summary ... 8

2

1. Overview

When a system is first booted, or is reset, the processor executes code at a well-known location. In a personal
computer (PC), this location is in the basic input/output system (BIOS), which is stored in flash memory on the
motherboard.
The central processing unit (CPU) in an embedded system invokes the reset vector to start a program at a known
address in flash/ROM. In either case, the result is the same. Because PCs offer so much flexibility, the BIOS must
determine which devices are candidates for boot. We'll look at this in more detail later.
When a boot device is found, the first-stage boot loader is loaded into RAM and executed. This boot loader is less
than 512 bytes in length (a single sector), and its job is to load the second-stage boot loader.
When the second-stage boot loader is in RAM and executing, a splash screen is commonly displayed, and Linux and
an optional initial RAM disk (temporary root file system) are loaded into memory. When the images are loaded, the
second-stage boot loader passes control to the kernel image and the kernel is decompressed and initialized. At this
stage, the second-stage boot loader checks the system hardware, enumerates the attached hardware devices,
mounts the root device, and then loads the necessary kernel modules. When complete, the first user-space program
(init) starts, and high-level system initialization is performed.
That's Linux boot in a nutshell. Now let's dig in a little further and explore some of the details of the Linux boot
process.

3

2. The BIOS Stage : System Startup

2.1 BIOS runs Power-On Self Test (POST)
The system startup stage depends on the hardware that Linux is being booted on. On an embedded platform, a
bootstrap environment is used when the system is powered on, or reset. Examples include U-Boot, RedBoot, and
MicroMonitor from Lucent. Embedded platforms are commonly shipped with a boot monitor. These programs reside
in special region of flash memory on the target hardware and provide the means to download a Linux kernel image
into flash memory and subsequently execute it. In addition to having the ability to store and boot a Linux image,
these boot monitors perform some level of system test and hardware initialization. In an embedded target, these
boot monitors commonly cover both the first- and second-stage boot loaders.

In a PC, booting Linux begins in the BIOS at address 0xFFFF0.
The first step of the BIOS is the power-on self test (POST). The job of the POST is to perform a check of the hardware.

2.2 First available boot device is started
The second step of the BIOS is local device enumeration and initialization.
Given the different uses of BIOS functions, the BIOS is made up of two parts: the POST code and runtime services.
After the POST is complete, it is flushed from memory, but the BIOS runtime services remain and are available to the
target operating system.
To boot an operating system, the BIOS runtime searches for devices that are both active and bootable in the order of
preference defined by the complementary metal oxide semiconductor (CMOS) settings. A boot device can be a
floppy disk, a CD-ROM, a partition on a hard disk, a device on the network, or even a USB flash memory stick.
Commonly, Linux is booted from a hard disk, where the Master Boot Record (MBR) contains the primary boot loader.
The MBR is a 512-byte sector, located in the first sector on the disk (sector 1 of cylinder 0, head 0).

BIOS loads and executes the MBR Boot loader

4

3. The GRUB Stages

3.1. Stage 1 : BIOS executes Primary Boot Loader code

The primary boot loader that resides in the MBR is a 512-byte image containing both program code and a small
partition table (see Figure 2). The first 446 bytes are the primary boot loader, which contains both executable code
and error message text. The next sixty-four bytes are the partition table, which contains a record for each of four
partitions (sixteen bytes each). The MBR ends with two bytes that are defined as the magic number (0xAA55). The
magic number serves as a validation check of the MBR.

The job of the primary boot loader is to find and load the secondary boot loader (stage 2). It does this by looking
through the partition table for an active partition. When it finds an active partition, it scans the remaining partitions
in the table to ensure that they're all inactive. When this is verified, the active partition's boot record is read from
the device into RAM and executed.

3.2. Stage 1.5 : Opening a Linux partition and read /boot/grub/grub.cnf
The partitions start at sector 63. The MBR is written in sector 0. This area between the MBR and the beginning of
partitions is called MBR GAP. GRUB uses this space to put some extra code in it.
The code in GRUB stage 1, doesn’t know how to read a Linux partition, and as a consequence load the kernel image
that is inside. That’s why the GRUB stage 1 load the content of the MBR GAP, which contains instructions for opening
a Linux partition.

MBR loads and executes the GRUB boot loader

5

3.3. Stage 2 : Secondary Boot Loader loads kernel and RAMdisk

The secondary, or second-stage, boot loader could be more aptly called the kernel loader. The task at this stage is to
load the Linux kernel and optional initial RAM disk.

GRUB stage boot loaders
The /boot/grub directory contains the stage1,stage1.5, and stage2 boot loaders, as well as a number of
alternate loaders (for example, CR-ROMs use theiso9660_stage_1_5).
The first- and second-stage boot loaders combined are called Linux Loader (LILO) or GRand Unified Bootloader
(GRUB) in the x86 PC environment. Because LILO has some disadvantages that were corrected in GRUB, let's look
into GRUB. (See many additional resources on GRUB, LILO, and related topics in the Resources section later in this
article.)
The great thing about GRUB is that it includes knowledge of Linux file systems. Instead of using raw sectors on the
disk, as LILO does, GRUB can load a Linux kernel from an ext2 or ext3 file system. It does this by making the two-
stage boot loader into a three-stage boot loader. Stage 1 (MBR) boots a stage 1.5 boot loader that understands the
particular file system containing the Linux kernel image. Examples include reiserfs_stage1_5 (to load from a
Reiser journaling file system) or e2fs_stage1_5 (to load from an ext2 or ext3 file system). When the stage 1.5 boot
loader is loaded and running, the stage 2 boot loader can be loaded.
With stage 2 loaded, GRUB can, upon request, display a list of available kernels (defined in /etc/grub.conf, with
soft links from/etc/grub/menu.lst and /etc/grub.conf). You can select a kernel and even amend it with
additional kernel parameters. Optionally, you can use a command-line shell for greater manual control over the boot
process.
With the second-stage boot loader in memory, the file system is consulted, and the default kernel image
and initrd image are loaded into memory. With the images ready, the stage 2 boot loader invokes the kernel
image.

GRUB just loads and executes Kernel and initrd images

http://www.ibm.com/developerworks/library/l-linuxboot/#resources

6

4. The Kernel Stage

4.1 The Kernel boot begins

With the kernel image in memory and control given from the stage 2 boot loader, the kernel stage begins. The kernel
image isn't so much an executable kernel, but a compressed kernel image. Typically this is a zImage (compressed
image, less than 512KB) or a bzImage (big compressed image, greater than 512KB), that has been previously
compressed with zlib. At the head of this kernel image is a routine that does some minimal amount of hardware
setup and then decompresses the kernel contained within the kernel image and places it into high memory. If an
initial RAM disk image is present, this routine moves it into memory and notes it for later use. The routine then calls
the kernel and the kernel boot begins.
When the bzImage (for an i386 image) is invoked, you begin at ./arch/i386/boot/head.S in
the start assembly routine (see Figure 3 for the major flow). This routine does some basic hardware setup and
invokes the startup_32 routine in./arch/i386/boot/compressed/head.S. This routine sets up a basic
environment (stack, etc.) and clears the Block Started by Symbol (BSS). The kernel is then decompressed through a
call to a C function called decompress_kernel (located in./arch/i386/boot/compressed/misc.c). When
the kernel is decompressed into memory, it is called. This is yet another startup_32 function, but this function is
in./arch/i386/kernel/head.S.
In the new startup_32 function (also called the swapper or process 0), the page tables are initialized and memory
paging is enabled. The type of CPU is detected along with any optional floating-point unit (FPU) and stored away for
later use. The start_kernel function is then invoked (init/main.c), which takes you to the non-architecture
specific Linux kernel. This is, in essence, the main function for the Linux kernel.

Figure 3. Major functions flow for the Linux kernel i386 boot

With the call to start_kernel, a long list of initialization functions are called to set up interrupts, perform further
memory configuration, and load the initial RAM disk. In the end, a call is made

7

to kernel_thread (in arch/i386/kernel/process.c) to start the init function, which is the first user-space
process. Finally, the idle task is started and the scheduler can now take control (after the call to cpu_idle). With
interrupts enabled, the pre-emptive scheduler periodically takes control to provide multitasking.
During the boot of the kernel, the initial-RAM disk (initrd) that was loaded into memory by the stage 2 boot loader
is copied into RAM and mounted. This initrd serves as a temporary root file system in RAM and allows the kernel
to fully boot without having to mount any physical disks. Since the necessary modules needed to interface with
peripherals can be part of the initrd, the kernel can be very small, but still support a large number of possible
hardware configurations. After the kernel is booted, the root file system is pivoted (via pivot_root) where
the initrd root file system is unmounted and the real root file system is mounted.
decompress_kernel output
The decompress_kernelfunction is where you see the usual decompression messages emitted to the display:
Uncompressing Linux... Ok, booting the kernel.
The initrd function allows you to create a small Linux kernel with drivers compiled as loadable modules. These
loadable modules give the kernel the means to access disks and the file systems on those disks, as well as drivers for
other hardware assets. Because the root file system is a file system on a disk, the initrd function provides a
means of bootstrapping to gain access to the disk and mount the real root file system. In an embedded target
without a hard disk, the initrd can be the final root file system, or the final root file system can be mounted via
the Network File System (NFS).

Manual boot in GRUB
From the GRUB command-line, you can boot a specific kernel with a named initrd image as follows:
grub> kernel /bzImage-2.6.14.2
 [Linux-bzImage, setup=0x1400, size=0x29672e]

grub> initrd /initrd-2.6.14.2.img
 [Linux-initrd @ 0x5f13000, 0xcc199 bytes]

grub> boot

Uncompressing Linux... Ok, booting the kernel.
If you don't know the name of the kernel to boot, just type a forward slash (/) and press the Tab key. GRUB will
display the list of kernels and initrd images.

4.2 The Kernel starts the first user space application the INIT process

8

5. Init

Executes runlevel programs

After the kernel is booted and initialized, the kernel starts the first user-space application. This is the first program
invoked that is compiled with the standard C library. Prior to this point in the process, no standard C applications
have been executed.
In a desktop Linux system, the first application started is commonly /sbin/init. But it need not be. Rarely do
embedded systems require the extensive initialization provided by init (as configured through /etc/inittab). In
many cases, you can invoke a simple shell script that starts the necessary embedded applications.

6. Summary

Much like Linux itself, the Linux boot process is highly flexible, supporting a huge number of processors and
hardware platforms. In the beginning, the loadlin boot loader provided a simple way to boot Linux without any frills.
The LILO boot loader expanded the boot capabilities, but lacked any file system awareness. The latest generation of
boot loaders, such as GRUB, permits Linux to boot from a range of file systems (from Minix to Reiser).

Not to be confused with a bootloader, many architectures use a bootstrap loader (Or second-stage loader) to load

the Linux Kernel image into memory.

Figure 2. Anatomy of the MBR

9

What is a bootloader?

Programs used to load an operating system or another boot loader

Boot loaders run in Real mode and use BIOS provided code

Operating systems replace BIOS code with their own

What is a second stage bootloader?

Programs like GRUB, LILO or NTLDR

Allow multi-boot systems

They are aware of file systems

Allow creation of ram discs in memory to boot the linux kernel

Once the kernel has retrieved all the information it requires in Real mode it will change the cpu to protected mode

providing support for virtual memory, memory protection, multitasking and code privilege levels.

