
1

How to Set and Unset Local, User and System Wide Environment Variables in

Linux

Environment Variables are some special variables that are defined in shell and are needed by programs while

execution. They can be system defined or user defined. System defined variables are those which are set by system

and are used by system level programs.

For e.g. PWD command is a very common system variable which is used to store the present working directory.

User defined variables are typically set by user, either temporarily for the current shell or permanently. The whole

concept of setting and un-setting environment variables revolves around some set of files and few commands and

different shells.

In Broader terms, an environment variable can be in three types:

1. Local Environment Variable
One defined for the current session. These environment variables last only till the current session, be it remote login

session, or local terminal session. These variables are not specified in any configuration files and are created, and

removed by using a special set of commands.

2. User Environment Variable
These are the variables which are defined for a particular user and are loaded every time a user logs in using a local

terminal session or that user is logged in using remote login session. These variables are typically set in and loaded

from following configuration files: .bashrc , .bash_profile , .bash_login , .profile files which

are present in user’s home directory.

3. System wide Environment Variables
These are the environment variables which are available system-wide, i.e. for all the users present on that system.

These variables are present in system-wide configuration files present in following directories and

files: /etc/environment , /etc/profile , /etc/profile.d/ , /etc/bash.bashrc . These

variables are loaded every time system is powered on and logged in either locally or remotely by any user.

Understanding User-Wide and System-wide Configuration files

Here, we briefly describe various configuration files listed above that hold Environment Variables, either system

wide or user specific.

.bashrc
This file is user specific file that gets loaded each time user creates a new local session i.e. in simple words, opens a

new terminal. All environment variables created in this file would take effect every time a new local session is

started.

.bash_profile
This file is user specific remote login file. Environment variables listed in this file are invoked every time the user is

logged in remotely i.e. using ssh session. If this file is not present, system looks for

either .bash_login or .profile files.

http://www.tecmint.com/pwd-command-examples/

2

/etc/environment
This file is system wide file for creating, editing or removing any environment variables. Environment variables

created in this file are accessible all throughout the system, by each and every user, both locally and remotely.

/etc/bash.bashrc

System wide bashrc file. This file is loaded once for every user, each time that user opens a local terminal

session. Environment variables created in this file are accessible for all users but only through local terminal session.

When any user on that machine is accessed remotely via a remote login session, these variables would not be visible.

/etc/profile
System wide profile file. All the variables created in this file are accessible by every user on the system, but only if

that user’s session is invoked remotely, i.e. via remote login. Any variable in this file will not be accessible for local

login session i.e. when user opens a new terminal on his local system.

Note: Environment variables created using system-wide or user-wide configuration files can be removed by

removing them from these files only. Just that after each change in these files, either log out and log in again or just

type following command on the terminal for changes to take effect:

Set or Unset Local or Session-wide Environment Variables in Linux

Local Environment Variables can be created using following commands:

These variables are session wide and are valid only for current terminal session. To Clear these session-wide

environment variables following commands can be used:

1. Using env

By default, "env" command lists all the current environment variables. But, if used with '-i' switch, it

temporarily clears out all the environment variables and lets user execute a command in current session in absence

of all the environment variables.

$ env –i [Var=Value]… command args…

Here, var=value corresponds to any local environment variable that you want to use with this command only.

$ env –i bash

Will give bash shell which temporarily would not have any of the environment variable. But, as you exit from the

shell, all the variables would be restored.

2. Using unset
Another way to clear local environment variable is by using unset command. To unset any local environment variable

temporarily,

$ unset <var-name>

Where, var-name is the name of local variable which you want to un-set or clear.

3

3. Set the variable name to ”

Another less common way would be to set the name of the variable which you want to clear, to '' (Empty). This

would clear the value of the local variable for current session for which it is active.

NOTE – YOU CAN EVEN PLAY WITH AND CHANGE THE VALUES OF SYSTEM OR USER ENVIRONMENT VARIABLES,

BUT CHANGES WOULD REFLECT IN CURRENT TERMINAL SESSION ONLY AND WOULD NOT BE PERMANENT.

Learn How to Create, User-Wide and System-Wide Environment Variables in Linux

In section, we will going to learn how to set or unset local, user and system wide environment variables in Linux with

below examples:

1. Set and Unset Local Variables in Linux

a.) Here, we create a local variable VAR1 and set it to any value. Then, we use unset to remove that local variable,

and at the end that variable is removed.

$ VAR1='TecMint is best Site for Linux Articles'

$ echo $VAR1

$ unset VAR1

$ echo $VAR1

b.) Another way of creating a local variable is by using export command. The local variable created will be

available for current session. To unset the variable simply set the value of variable to '' .

$ export VAR='TecMint is best Site for Linux Articles'

$ echo $VAR

$ VAR=

$ echo $VAR

c.) Here, we created a local variable VAR2 and set it to a value. Then in-order to run a command temporarily

clearing out all local and other environment variables, we executed 'env –i' command. This command here

executed bash shell by clearing out all other environment variables. After entering 'exit' on the invoked bash

shell, all variables would be restored.

$ VAR2='TecMint is best Site for Linux Articles'

$ echo $VAR2

$ env -i bash

$ echo $VAR2

4

2. Set and Unset User-Wide Environment Variables in Linux

a.) Modify .bashrc file in your home directory to export or set the environment variable you need to add. After

that source the file, to make the changes take effect. Then you would see the variable ('CD' in my case), taking

effect. This variable will be available every time you open a new terminal for this user, but not for remote login

sessions.

$ vi .bashrc

Add the following line to .bashrc file at the bottom.

export CD='This is TecMint Home'

Now run the following command to take new changes and test it.

$ source .bashrc

$ echo $CD

To remove this variable, just remove the following line in .bashrc file and re-source it:

b.) To add a variable which will be available for remote login sessions (i.e. when you ssh to the user from remote

system), modify .bash_profile file.

$ vi .bash_profile

Add the following line to .bash_profile file at the bottom.

export VAR2='This is TecMint Home'

When on sourcing this file, the variable will be available when you ssh to this user, but not on opening any new local

terminal.

$ source .bash_profile

$ echo $VAR2

Here, VAR2 is not initially available but, on doing ssh to user on localhost, the variable becomes available.

$ ssh tecmint@localhost

$ echo $VAR2

To remove this variable, just remove the line in .bash_profile file which you added, and re-source the file.

NOTE: These variables will be available every time you are logged in to current user but not for other users.

3. Set and Unset System-Wide Environment Variables in Linux

a.) To add system wide no-login variable (i.e. one which is available for all users when any of them opens new

terminal but not when any user of machine is remotely accessed) add the variable to /etc/bash.bashrc file.

export VAR='This is system-wide variable'

After that, source the file.

$ source /etc/bash.bashrc

5

Now this variable will be available for every user when he opens any new terminal.

$ echo $VAR

$ sudo su

$ echo $VAR

$ su -

$ echo $VAR

Here, same variable is available for root user as well as normal user. You can verify this by logging in to other user.

b.) If you want any environment variable to be available when any of the user on your machine is remotely logged

in, but not on opening any new terminal on local machine, then you need to edit the file – '/etc/profile' .

export VAR1='This is system-wide variable for only remote sessions'

After adding the variable, just re-source the file. Then the variable would be available.

$ source /etc/profile

$ echo $VAR1

To remove this variable, remove the line from /etc/profile file and re-source it.

c.) However, if you want to add any environment which you want to be available all throughout the system, on both

remote login sessions as well as local sessions(i.e. opening a new terminal window) for all users, just export the

variable in /etc/environment file.

export VAR12='I am available everywhere'

After that just source the file and the changes would take effect.

$ source /etc/environment

$ echo $VAR12

$ sudo su

$ echo $VAR12

$ exit

$ ssh localhost

$ echo $VAR12

Here, as we see the environment variable is available for normal user, root user, as well as on remote login session

(here, to localhost).

To clear out this variable, just remove the entry in the /etc/environment file and re-source it or login again.

NOTE: Changes take effect when you source the file. But, if not then you might need to log out and log in again.

Conclusion
Thus, these are few ways we can modify the environment variables. If you find any new and interesting tricks for the

same do mention in your comments.

6

You can start a bash shell in three ways:

 As a default login shell at login time

 As an interactive shell that is started by spawning a subshell

 As a non-interactive shell to run a script

Bash behaviour can be altered depending on how it is invoked. Some descriptions of different modes follow.
If Bash is spawned by login in a TTY, by an SSH daemon, or similar means, it is considered a login shell.
This mode can also be engaged using the -l/--login command line option.

Bash is considered an interactive shell when its standard input and error are connected to a terminal (for example,
when run in a terminal emulator), and it is not started with the -c option or non-option arguments (for example,
bash script). All interactive shells source /etc/bash.bashrc and ~/.bashrc, while interactive login shells also
source /etc/profile and ~/.bash_profile.

Startup methods

1. Logging In
When you log in to the Linux system, the bash shell starts as a login shell. The login shell typically looks for five

different startup files to process commands from:

 /etc/profile

 $HOME/.bash_profile

 $HOME/.bashrc

 $HOME/.bash_login

 $HOME/.profile

 $HOME/.bash_logout (when exiting)

The /etc/profile file is the main default startup file for the bash shell on the system.

All users on the system execute this startup file when they log in.

https://wiki.archlinux.org/index.php/SSH
http://unix.stackexchange.com/a/96805

7

Viewing the $HOME startup files

The remaining startup files are all used for the same function to provide a user-specific startup file for defining user-

specific environment variables. Most Linux distributions use only one or two of these four startup files :

 $HOME/.bash_profile

 $HOME/.bashrc

 $HOME/.bash_login

 $HOME/.profile

Notice that all four files start with a dot, making them hidden files (They don’t appear in a normal ls command

listing).

Because they are in the user’s HOME directory, each user can edit the files and add his or her own environment
variables that are active for every bash shell session they start.

2. Understanding the interactive shell process

If you start a bash shell without logging into a system (If you type bash at a CLI prompt, for example), you start

what’s called an interactive shell.

Interactive login shell (ssh from somewhere else)

The interactive shell doesn’t act like the login shell, but it still provides a CLI prompt for you to enter commands.

8

If bash is started as an interactive shell, it doesn’t process the /etc/profile file. Instead, it only checks for the .bashrc
file in the user’s HOME directory.

The startup files are sourced, not executed

Source and .

Source executes a file in the current shell and preserves changes to the environment

. is the same as source

Interactive non-login shell (calling bash from the commandline)

Retains environment from login shell

~/.bashrc

Shell levels seen with $SHLVL

3. Understanding the non-interactive shell process
The last type of shell is a non-interactive subshell. This is the shell where the system can start to execute a shell
script. This is different in that there isn’t a CLI prompt to worry about. However, you may want to run specific startup
commands each time you start a script on your system.

To accommodate that situation, the bash shell provides the BASH_ENV environment variable.
When the shell starts a non-interactive subshell process, it checks this environment
variable for the startup fi le name to execute. If one is present, the shell executes the fi le’s
commands, which typically include variables set for the shell scripts.

Retains environment from login shell $BASH_ENV (if set) Set to a file like ~/.bashrc

9

10

File Login shells Interactive,
non-login shells

Intended Use

/etc/profile Sources application settings in
/etc/profile.d/*.sh and
/etc/bash.bashrc

Yes No Global Useful
Environment Variables
System wide initialization
file

~/.bash_profile Per-user, after /etc/profile. If this file
does not exist, ~/.bash_login and
~/.profile are checked in that order

Yes No User Specific
Environment Variables

~/.bash_logout After exit of a login shell Yes No

/etc/bash.bashrc Depends on the -
DSYS_BASHRC=”/etc/bash.bashrc”
compilation flag. Sources
/usr/share/bash-
completion/bash_completion

No Yes System wide per-
interactive-shell startup
file
This is a non-standard
file which may not exist
on your distribution.
Even if it exists, it will not
be sourced unless it is
done explicitely in
another start-up file

~/.bashrc Per-user, after /etc/bash.bashrc No Yes User specific aliases,
shell functions, and shell
options

Login, Interactive shell
The shell reads these files in sequence: (system wide) /etc/profile; (per user) ~/.bash_profile; ~/.bash_login;
~/.profile; (when logout) ~/.bash_logout.

Login, Non-Interactive shell
Login shells can be non-interactive when called with the --login argument.
The shell reads these files in sequence: (system wide) /etc/profile; (per user) ~/.profile; (when logout)
~/.bash_logout.

Non Login, Interactive shell
The shell reads these files in sequence: (per user) ~/.bashrc; (when exit) ~/.bash_logout.

Non Login, Non Interactive shell
The shell starts by executing $BASH_ENV and exits with reading ~/.bash_logout.
While interactive, non-login shells do not source ~/.bash_profile, they still inherit the environment from their
parent process (which may be a login shell).

11

Configuring your login sessions with dot files

The way your system behaves with respect to the reading of "dot files" at login time, setting up aliases, setting up
environment variables, and so on is all highly dependent on how you actually log in.

Console logins

Let's start with the simplest configuration: a local login on the Linux text console, without any graphical environment
at all. In this case, when you boot the computer, you eventually see a "login:" prompt. This prompt is produced by a
program called getty(8) which runs on the tty (terminal) device.
When you type a username, getty reads it and passes it to the program called login(1).
login reads the password database and decides whether it needs to ask you for a password. Once you've provided
your password, login exec(2)s your login shell, bash.

Now, since bash is being invoked as a login shell (with name "-bash", a special ancient hack), it reads /etc/profile
first. On Linux systems, this will typically also source every file in /etc/profile.d as required by the Linux
standard base. (Generally /etc/profile should include code for this.)
Then it looks in your home directory for .bash_profile, and if it finds it, it reads that. If it doesn't find
.bash_profile, it looks for .bash_login, and if it doesn't find that, it looks for .profile (the standard
Bourne/Korn shell configuration file).Otherwise, it stops looking for dot files, and gives you a prompt.

Many Linux systems also have another layer called PAM which is relevant here. Before "execing" bash, login will read
the /etc/pam.d/login file (or its equivalent on your system), which may tell it to read various other files such as
/etc/environment. Other systems such as OpenBSD have an /etc/login.conf file which controls resource
limits for various classes of user accounts. So you may have some extra enviroment variables, process limits, and so
on, before your shell reads /etc/profile.

You may have noted that .bashrc is not being read in this situation. You should therefore always have
source ~/.bashrc at the end of your .bash_profile in order to force it to be read by a login shell. If you use
.profile instead of .bash_profile, you additionally need to test if the shell is bash first:
.profile
if [-n "$BASH"] && [-r ~/.bashrc]; then
 . ~/.bashrc
fi
Why is .bashrc a separate file from .bash_profile, then? There are a couple reasons. The first is performance --
when machines were extremely slow compared to today's workstations, processing the commands in .profile or
.bash_profile could take quite a long time, especially on machines where a lot of the work had to be done by
external commands (before Korn/Bash shells). So the difficult initial set-up commands, which create environment
variables that can be passed down to child processes, are put in .bash_profile. The transient settings and
aliases/functions which are not inherited are put in .bashrc so that they can be re-read by every new interactive
shell.
The second reason why .bashrc is separate is due to work habits. If you work in an office setting with a terminal on
your desk, you probably login one time at the start of each day, and logout at the end of the day. You may put
various special commands in your .bash_profile that you want to run at the start of each day, when you login --
checking for announcements from management, etc. You wouldn't want those to be done every time you launch a
new shell. So, having this separation gives you some flexibility.

Let's take a moment to review. A system administrator has set up a Debian system (which is Linux-based and uses
PAM) and has a locale setting of LANG=en_US in /etc/environment. A local user named pierre prefers to use the
fr_CA locale instead, so he puts export LANG=fr_CA in his .bash_profile. He also puts source ~/.bashrc
in that same file, and then puts set +o histexpand in his .bashrc. Now he logs in to the Debian system by
sitting at the console. login(1) (via PAM) reads /etc/environment and puts LANG=en_US in the environment.

http://refspecs.linuxfoundation.org/LSB_3.2.0/LSB-Core-generic/LSB-Core-generic/sh.html
http://refspecs.linuxfoundation.org/LSB_3.2.0/LSB-Core-generic/LSB-Core-generic/sh.html
http://mywiki.wooledge.org/ProcessManagement#theory
http://mywiki.wooledge.org/locale

12

Then login "execs" bash, which reads /etc/profile and .bash_profile. The export command in
.bash_profile causes the environment variable LANG to be changed from en_US to fr_CA. Finally, the source
command causes bash to read .bashrc, so that the set +o histexpand command is executed for this shell.
After all this, pierre gets his prompt and is ready to type commands interactively.

Remote shell logins

Now let's take the second-simplest example: an ssh login. This is extremely similar to the text console login, except
that instead of using getty and login to handle the initial greeting and password authentication, sshd(8) handles it.
sshd in Debian is also linked with PAM, and it will read the /etc/pam.d/ssh file (instead of /etc/pam.d/login).
Otherwise, the handling is the same. Once sshd has run through the PAM steps (if applicable to your system), it
"execs" bash as a login shell, which causes it to read /etc/profile and then one of .bash_profile or
.bash_login or .profile.
The major difference when using a remote shell login instead of a local console login is that there is a client ssh
process running on your local system (or wherever you ssh-ed from) which already has its own environment
variables -- and some of those may be sent to the sshd on the system you're logging into. In particular, it is desirable
for the LANG and LC_* variables to be preserved by the remote shell. Unfortunately, the configuration files on the
server may override them. Getting this set up to work correctly in all cases is tricky. (Here's an example procedure
for Debian.)

Remote non login non interactive shells
Bash has a special compile time option that will cause it to source the .bashrc file on non-login, non-interactive ssh
sessions. This feature is only enabled by certain OS vendors (mostly Linux distributions). It is not enabled in a default
upstream Bash build, and (empirically) not on OpenBSD either.
If this feature is enabled on your system, Bash detects that SSH_CLIENT or SSH_CLIENT2 is in the environment and in
this case source .bashrc. eg suppose you have var=foo in your remote .bashrc and you do
ssh remotehost echo \$var it will print foo.
This shell is non-interactive so you can test $- or $PS1, if you don't want things to be executed this way in your
.bashrc.
Without this option bash will test if stdin is connected to a socket and will also source .bashrc in this case BUT this
test fails if you use a recent openssh server (>5.0) which means that you will probably only see this on older systems.
Note that a test on SHLVL is also done, so if you do: ssh remotehost bash -c echo then the first bash will source
.bashrc but not the second one (the explicit bash on the command line that runs echo).
The behaviour of the bash patched to source a system level bashrc by some vendors is left as an exercise.

X sessions
Let's suppose pierre (our console user) decides he wants to run X for a while. He types startx, which invokes
whichever set of X clients he prefers. startx is a wrapper around xinit, which runs the X server ("X"), and then
runs through pierre's .xinitrc or .xsession file (if either one exists), or the system-wide default Xsession
otherwise. Let's suppose pierre has the command exec fluxbox (and nothing else) in his .xsession file. When
the smoke clears, he'll have an X server process running (as root), and a fluxbox process running (as pierre). fluxbox
was created as a child of xinit, which was a child of startx, which was a child of bash, so it inherited pierre's LANG and
other environment variables. When pierre launches something from the window manager's menu, that new
command will be a child of fluxbox, so it inherits LANG, PATH, MAIL, etc. as well. In addition to all of that, fluxbox
inherits the DISPLAY environment variable which tells it what X server to contact (in this case, probably :0).
So what happens when pierre runs an xterm? fluxbox "forks" and "execs" an xterm process, which inherits DISPLAY,
and so on. xterm contacts the X server, authenticates if necessary, and then draws itself on the display. In addition to
DISPLAY, it inherited pierre's SHELL variable, which probably contains /bin/bash, so it sets up a pseudo-terminal,
then spawns a /bin/bash process to run in it. Since /bin/bash doesn't start with a -, this one will not be a login
shell. It will be a normal shell, which doesn't read /etc/profile or .bash_profile or .profile. Instead, it
reads .bashrc which in our example contains the line set +o histexpand. So his new xterm is running a bash

http://wiki.debian.org/Locale
http://wiki.debian.org/Locale

13

shell, with all of his environment variables set (remember, they were inherited from his initial text console login
shell), and his shell option of choice has been enabled (from .bashrc).
What we've seen so far is the normal Unix setup. Many people choose to run their systems this way, and it works
well. It's also fairly simple to understand once you've been exposed to the basic concepts. If you want to change
something, you know precisely what file to edit to make it happen -- aliases and transient shell options go in
.bashrc, and environment variables, process limits, and so on go in .bash_profile. If you want to run various X
client commands before your window manager or desktop environment is invoked (for example, xterm & or
xmodmap -e 'keysym Super_R = Multi_key'), you can put them in .xsession before the
exec YourWindowManager line.
However, some people like to have a graphical login (display manager), and that changes pretty much everything
we've seen so far. Instead of getty and login, there's an xdm (or gdm or kdm or wdm or ...) process handling the
authentication. And the biggest difference of all is that when our *dm process finishes authenticating the user, it
doesn't "exec" a login shell. Instead, it "execs" an X session directly. Therefore, none of the "normal" user
configuration files are read in at all -- no /etc/profile, no .bash_profile and no .profile. (But
/etc/environment is still read in by PAM, assuming /etc/pam.d/*dm is configured to use pam_limits, as is the
case on Debian.)
Let's take xdm as an example. Pierre comes back from vacation one day and discovers that his system administrator
has installed xdm on the Debian system. He logs in just fine, and xdm reads his .xsession file and runs fluxbox.
Everything seems to be OK until he gets an error message in the wrong locale! Since he overrides the LANG variable
in his .bash_profile, and since xdm never reads .bash_profile, his LANG variable is now set to en_US instead
of fr_CA.
Now, the naive solution to this problem is that instead of launching xterm, he could configure his window manager
to launch xterm -ls. This flag tells xterm that instead of launching a normal shell, it should launch a login shell.
Under this setup, xterm spawns /bin/bash but it puts -/bin/bash (or maybe -bash) in the argument vector, so
bash acts like a login shell. This means that every time he opens up a new xterm, it will read /etc/profile and
.bash_profile (built-in bash behavior), and then .bashrc (because his .bash_profile says to do that). This
may seem to work fine at first -- his dot files aren't heavy, so he doesn't even notice the delay -- but there's a more
subtle problem. He also launches a web browser directly from his fluxbox menu, and the web browser inherits the
LANG variable from fluxbox, which is still set to the wrong locale. So while his xterms may be fine, and anything
launched from his xterms may be fine, his web browser is still giving him pages in the wrong locale.
So, what's the best solution to this problem? There really isn't a universal one. One approach is to modify the
.xsession file to look something like this:
[-r /etc/profile] && source /etc/profile

[-r ~/.bash_profile] && source ~/.bash_profile

xmodmap -e 'keysym Super_R = Multi_key'

xterm &

exec fluxbox

This causes the shell that's interpreting the .xsession script to read in /etc/profile and .bash_profile if
they exist and are readable, before running xmodmap or xterm or "execing" the window manager. However, there's
one potential drawback to this approach: under xdm, the shell that reads .xsession runs without a controlling
terminal. If either /etc/profile or .bash_profile uses any commands that assume the presence of a terminal
(such as fortune or stty), those commands may fail. This is the primary reason why xdm doesn't read those files
by default. If you're going to use this approach, you must make sure that all of the commands in your "dot files" are
safe to run when there's no terminal.
One way to do that, but still retain those commands for use when you login with ssh, is to protect the relevant block
of code with an if statement. For example:
Afficher/masquer les numéros de lignes

Sample .bash_profile

export PATH=$HOME/bin:$PATH

export MAIL=$HOME/Maildir/

export LESS=-X

export EDITOR=vim VISUAL=vim

export LANG=fr_CA

Begin protected block

if [-t 0]; then # check for a terminal

 [x"$TERM" = x"wy30"] && stty erase ^h # sample legacy environment

http://mywiki.wooledge.org/DotFiles

14

 echo "Welcome to Debian, $LOGNAME"

 /usr/games/fortune

fi

End protected block

[-r ~/.bashrc] && source ~/.bashrc

Unfortunately, the other display manager programs (kdm, gdm, etc.) do not all use the same configuration files that
xdm uses. So this approach may not work for them. You may need to consult the documentation for your display
manager program to find out which file(s) you should use for controlling your sessions.

