
Linux Security

IPTABLES FIREWALL

Table of Contents
1. Introduction to routers ... 2

2. Iptables firewall ... 5

List of Tables
4.1. Debian User Environment 33

4.2. Red Hat User Environment 33

6.1. Unix special files 48

6.2. standard Unix file permissions 49

6.3. Unix file permissions position ... 49

6.4. Octal permissions 52

10.1. Packet Forwarding Exercise 80

1. Introduction to routers

What follows is a very brief introduction to using Linux as a router.
introduction to routers

10.1. router or firewall
A router is a device that connects two networks. A firewall is a device that besides acting

as a router, also contains (and implements) rules to determine whether packets are allowed

to travel from one network to another. A firewall can be configured to block access based

on networks, hosts, protocols and ports. Firewalls can also change the contents of packets

while forwarding them.

10.2. packet forwarding
Packet forwarding means allowing packets to go from one network to another. When a

multihomed host is connected to two different networks, and it allows packets to travel from

one network to another through its two network interfaces, it is said to have enabled packet

forwarding.

10.3. packet filtering
Packet filtering is very similar to packet forwarding, but every packet is individually tested

against rules that decide on allowing or dropping the packet. The rules are stored by iptables.

10.4. stateful
A stateful firewall is an advancement over stateless firewalls that inspect every individual

packet. A stateful firewall will keep a table of active connections, and is knowledgeable

enough to recognise when new connections are part of an active session. Linux iptables is

a stateful firewall.
introduction to routers

78

10.5. nat (network address translation)
A nat device is a router that is also changing the source and/or target ip-address in packets.

It is typically used to connect multiple computers in a private address range (rfc 1918) with

the (public) internet. A nat can hide private addresses from the internet.

It is important to understand that people and vendors do not always use the right term when

referring to a certain type of nat. Be sure you talk about the same thing. We can distuinguish

several types of nat.

10.6. pat (port address translation)
nat often includes pat. A pat device is a router that is also changing the source and/or target

tcp/udp port in packets. pat is Cisco terminology and is used by snat, dnat, masquerading

and port forwarding in Linux. RFC 3022 calls it NAPT and defines the nat/pat combo as

"traditional nat". A device sold to you as a nat-device will probably do nat and pat.

10.7. snat (source nat)
A snat device is changing the source ip-address when a packet passes our nat. snat

configuration with iptables includes a fixed target source address.

10.8. masquerading
Masquerading is a form of snat that will hide the (private) source ip-addresses of your

private network using a public ip-address. Masquerading is common on dynamic internet

interfaces (broadband modem/routers). Masquerade configuration with iptables uses a

dynamic target source address.

10.9. dnat (destination nat)

A dnat device is changing the destination ip-address when a packet passes our nat.

10.10. port forwarding
When static dnat is set up in a way that allows outside connections to enter our private

network, then we call it port forwarding.
introduction to routers

79

10.11. /proc/sys/net/ipv4/ip_forward
Whether a host is forwarding packets is defined in /proc/sys/net/ipv4/ip_forward. The

following screenshot shows how to enable packet forwarding on Linux.
root@router~# echo 1 > /proc/sys/net/ipv4/ip_forward

The next command shows how to disable packet forwarding.
root@router~# echo 0 > /proc/sys/net/ipv4/ip_forward

Use cat to check if packet forwarding is enabled.
root@router~# cat /proc/sys/net/ipv4/ip_forward

10.12. /etc/sysctl.conf
By default, most Linux computers are not configured for automatic packet forwarding.

To enable packet forwarding whenever the system starts, change the net.ipv4.ip_forward

variable in /etc/sysctl.conf to the value 1.
root@router~# grep ip_forward /etc/sysctl.conf

net.ipv4.ip_forward = 0

10.13. sysctl
For more information, take a look at the man page of sysctl.
root@debian6~# man sysctl

root@debian6~# sysctl -a 2>/dev/null | grep ip_forward

net.ipv4.ip_forward = 0

introduction to routers

80

10.14. practice: packet forwarding
0. You have the option to select (or create) an internal network when adding a network card

in VirtualBox or VMWare. Use this option to create two internal networks. I named them

leftnet and rightnet, but you can choose any other name.

1. Set up two Linux machines, one on leftnet, the other on rightnet. Make sure they both

get an ip-address in the correct subnet. These two machines will be 'left' and 'right' from

the 'router'.

2. Set up a third Linux computer with three network cards, one on leftnet, the other on

rightnet. This computer will be the 'router'. Complete the table below with the relevant

names, ip-addresses and mac-addresses.

Table 10.1. Packet Forwarding Exercise
leftnet computer the router rightnet computer

MAC

IP

3. How can you verify whether the router will allow packet forwarding by default or not ?

Test that you can ping from the router to the two other machines, and from those two

machines to the router. Use arp -a to make sure you are connected with the correct mac

addresses.
introduction to routers

81

4. Ping from the leftnet computer to the rightnet computer. Enable and/or disable packet

forwarding on the router and verify what happens to the ping between the two networks. If

you do not succeed in pinging between the two networks (on different subnets), then use a

sniffer like wireshark or tcpdump to discover the problem.

5. Use wireshark or tcpdump -xx to answer the following questions. Does the source MAC

change when a packet passes through the filter ? And the destination MAC ? What about

source and destination IP-addresses ?

6. Remember the third network card on the router ? Connect this card to a LAN with internet

connection. On many LAN's the command dhclient eth0 just works (replace eth0 with the

correct interface).
root@router~# dhclient eth0

You now have a setup similar to this picture. What needs to be done to give internet access

to leftnet and rightnet.
introduction to routers

82

10.15. solution: packet forwarding
1. Set up two Linux machines, one on leftnet, the other on rightnet. Make sure they both

get an ip-address in the correct subnet. These two machines will be 'left' and 'right' from

the 'router'.

The ip configuration on your computers should be similar to the following two screenshots.

Both machines must be in a different subnet (here 192.168.60.0/24 and 192.168.70.0/24). I

created a little script on both machines to configure the interfaces.
root@left~# cat leftnet.sh

pkill dhclient

ifconfig eth0 192.168.60.8 netmask 255.255.255.0

root@right~# cat rightnet.sh

pkill dhclient

ifconfig eth0 192.168.70.9 netmask 255.255.255.0

2. Set up a third Linux computer with three network cards, one on leftnet, the other on

rightnet. This computer will be the 'router'. Complete the table below with the relevant

names, ip-addresses and mac-addresses.
root@router~# cat router.sh

ifconfig eth1 192.168.60.1 netmask 255.255.255.0

ifconfig eth2 192.168.70.1 netmask 255.255.255.0

#echo 1 > /proc/sys/net/ipv4/ip_forward

Your setup may use different ip and mac addresses than the ones in the table below.

Table 10.2. Packet Forwarding Solution
leftnet computer the router rightnet computer

08:00:27:f6:ab:b9 08:00:27:43:1f:5a 08:00:27:be:4a:6b 08:00:27:14:8b:17

192.168.60.8 192.168.60.1 192.168.70.1 192.168.70.9

introduction to routers

83

3. How can you verify whether the router will allow packet forwarding by default or not ?

Test that you can ping from the router to the two other machines, and from those two

machines to the router. Use arp -a to make sure you are connected with the correct mac

addresses.

This can be done with "grep ip_forward /etc/sysctl.conf" (1 is enabled, 0 is disabled) or

with sysctl -a | grep ip_for.
root@router~# grep ip_for /etc/sysctl.conf

net.ipv4.ip_forward = 0

4. Ping from the leftnet computer to the rightnet computer. Enable and/or disable packet

forwarding on the router and verify what happens to the ping between the two networks. If

you do not succeed in pinging between the two networks (on different subnets), then use a

sniffer like wireshark or tcpdump to discover the problem.

Did you forget to add a default gateway to the LAN machines ? Use route add default

gw 'ip-address'.
root@left~# route add default gw 192.168.60.1

root@right~# route add default gw 192.168.70.1

You should be able to ping when packet forwarding is enabled (and both default gateways

are properly configured). The ping will not work when packet forwarding is disabled or

when gateways are not configured correctly.

5. Use wireshark or tcpdump -xx to answer the following questions. Does the source MAC

change when a packet passes through the filter ? And the destination MAC ? What about

source and destination IP-addresses ?

Both MAC addresses are changed when passing the router. Use tcpdump -xx like this:
root@router~# tcpdump -xx -i eth1

root@router~# tcpdump -xx -i eth2

introduction to routers

84

6. Remember the third network card on the router ? Connect this card to a LAN with internet

connection. On many LAN's the command dhclient eth0 just works (replace eth0 with the

correct interface.
root@router~# dhclient eth0

You now have a setup similar to this picture. What needs to be done to give internet access

to leftnet and rightnet.

The clients on leftnet and rightnet need a working dns server. We use one of Google's

dns servers here.
echo nameserver 8.8.8.8 > /etc/resolv.conf

85

2. Iptables firewall

This chapter introduces some simple firewall rules and how to configure them with iptables.

iptables is an application that allows a user to configure the firewall functionality built into

the Linux kernel.

11.1. iptables tables
By default there are three tables in the kernel that contain sets of rules.

The filter table is used for packet filtering.
root@debian6~# iptables -t filter -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

The nat table is used for address translation.
root@debian6~# iptables -t nat -L

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

The mangle table can be used for special-purpose processing of packets.

Series of rules in each table are called a chain. We will discuss chains and the nat table

later in this chapter.

11.2. starting and stopping iptables
The following screenshot shows how to stop and start iptables on Red Hat/Fedora/CentOS

and compatible distributions.
[root@centos6 ~]# service iptables stop

[root@centos6 ~]# service iptables start

iptables: Applying firewall rules [ok]

[root@centos6 ~]#

Debian and *buntu distributions do not have this script, but allow for an uninstall.
root@debian6~# aptitude purge iptables

iptables firewall

87

11.3. the filter table
11.3.1. about packet filtering
Packet filtering is a bit more than packet forwarding. While packet forwarding uses only

a routing table to make decisions, packet filtering also uses a list of rules. The kernel will

inspect packets and decide based on these rules what to do with each packet.

11.3.2. filter table
The filter table in iptables has three chains (sets of rules). The INPUT chain is used for any

packet coming into the system. The OUTPUT chain is for any packet leaving the system.

And the FORWARD chain is for packets that are forwarded (routed) through the system.

The screenshot below shows how to list the filter table and all its rules.
[root@RHEL5 ~]# iptables -t filter -nL

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

[root@RHEL5 ~]#

As you can see, all three chains in the filter table are set to ACCEPT everything. ACCEPT

is the default behaviour.
iptables firewall

88

11.3.3. setting default rules
The default for the default rule is indeed to ACCEPT everything. This is not the most secure

firewall.

A more secure setup would be to DROP everything. A package that is dropped will not

continue in any chain, and no warning or error will be sent anywhere.

The below commands lock down a computer. Do not execute these commands inside a

remote ssh shell.
root@debianpaul~# iptables -P INPUT DROP

root@debianpaul~# iptables -P OUTPUT DROP

root@debianpaul~# iptables -P FORWARD DROP

root@debianpaul~# iptables -L

Chain INPUT (policy DROP)

target prot opt source destination

Chain FORWARD (policy DROP)

target prot opt source destination

Chain OUTPUT (policy DROP)

target prot opt source destination

11.3.4. changing policy rules
To start, let's set the default policy for all three chains to drop everything. Note that you

might lose your connection when typing this over ssh ;-).
[root@RHEL5 ~]# iptables -P INPUT DROP

[root@RHEL5 ~]# iptables -P FORWARD DROP

[root@RHEL5 ~]# iptables -P OUTPUT DROP

Next, we allow the server to use its own loopback device (this allows the server to access

its services running on localhost). We first append a rule to the INPUT chain to allow

(ACCEPT) traffic from the lo (loopback) interface, then we do the same to allow packets to

leave the system through the loopback interface.
[root@RHEL5 ~]# iptables -A INPUT -i lo -j ACCEPT

[root@RHEL5 ~]# iptables -A OUTPUT -o lo -j ACCEPT

Looking at the filter table again (omitting -t filter because it is the default table).
[root@RHEL5 ~]# iptables -nL

Chain INPUT (policy DROP)

target prot opt source destination

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy DROP)

target prot opt source destination

Chain OUTPUT (policy DROP)

target prot opt source destination

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

iptables firewall

89

11.3.5. Allowing ssh over eth0
This example show how to add two rules to allow ssh access to your system from outside.
[root@RHEL5 ~]# iptables -A INPUT -i eth0 -p tcp --dport 22 -j ACCEPT

[root@RHEL5 ~]# iptables -A OUTPUT -o eth0 -p tcp --sport 22 -j ACCEPT

The filter table will look something like this screenshot (note that -v is added for more

verbose output).
[root@RHEL5 ~]# iptables -nvL

Chain INPUT (policy DROP 7 packets, 609 bytes)

pkts bytes target prot opt in out source destination

0 0 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0

0 0 ACCEPT tcp -- eth0 * 0.0.0.0/0 0.0.0.0/0 tcp dpt:22

Chain FORWARD (policy DROP 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination

Chain OUTPUT (policy DROP 3 packets, 228 bytes)

pkts bytes target prot opt in out source destination

0 0 ACCEPT all -- * lo 0.0.0.0/0 0.0.0.0/0

0 0 ACCEPT tcp -- * eth0 0.0.0.0/0 0.0.0.0/0 tcp spt:22

[root@RHEL5 ~]#

11.3.6. Allowing access from a subnet
This example shows how to allow access from any computer in the 10.1.1.0/24 network, but

only through eth1. There is no port (application) limitation here.
[root@RHEL5 ~]# iptables -A INPUT -i eth1 -s 10.1.1.0/24 -p tcp -j ACCEPT

[root@RHEL5 ~]# iptables -A OUTPUT -o eth1 -d 10.1.1.0/24 -p tcp -j ACCEPT

Together with the previous examples, the policy is expanding.
[root@RHEL5 ~]# iptables -nvL

Chain INPUT (policy DROP 7 packets, 609 bytes)

pkts bytes target prot opt in out source destination

0 0 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0

0 0 ACCEPT tcp -- eth0 * 0.0.0.0/0 0.0.0.0/0 tcp dpt:22

0 0 ACCEPT tcp -- eth1 * 10.1.1.0/24 0.0.0.0/0

Chain FORWARD (policy DROP 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination

Chain OUTPUT (policy DROP 3 packets, 228 bytes)

pkts bytes target prot opt in out source destination

0 0 ACCEPT all -- * lo 0.0.0.0/0 0.0.0.0/0

0 0 ACCEPT tcp -- * eth0 0.0.0.0/0 0.0.0.0/0 tcp spt:22

0 0 ACCEPT tcp -- * eth1 0.0.0.0/0 10.1.1.0/24

iptables firewall

90

11.3.7. iptables save
Use iptables save to automatically implement these rules when the firewall is (re)started.
[root@RHEL5 ~]# /etc/init.d/iptables save

Saving firewall rules to /etc/sysconfig/iptables: [OK]

[root@RHEL5 ~]#

11.3.8. scripting example
You can write a simple script for these rules. Below is an example script that implements

the firewall rules that you saw before in this chapter.
#!/bin/bash

first cleanup everything

iptables -t filter -F

iptables -t filter -X

iptables -t nat -F

iptables -t nat -X

default drop

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -P OUTPUT DROP

allow loopback device

iptables -A INPUT -i lo -j ACCEPT

iptables -A OUTPUT -o lo -j ACCEPT

allow ssh over eth0 from outside to system

iptables -A INPUT -i eth0 -p tcp --dport 22 -j ACCEPT

iptables -A OUTPUT -o eth0 -p tcp --sport 22 -j ACCEPT

allow any traffic from 10.1.1.0/24 to system

iptables -A INPUT -i eth1 -s 10.1.1.0/24 -p tcp -j ACCEPT

iptables -A OUTPUT -o eth1 -d 10.1.1.0/24 -p tcp -j ACCEPT

iptables firewall

91

11.3.9. Allowing ICMP(ping)
When you enable iptables, you will get an 'Operation not permitted' message when trying

to ping other hosts.
[root@RHEL5 ~# ping 192.168.187.130

PING 192.168.187.130 (192.168.187.130) 56(84) bytes of data.

ping: sendmsg: Operation not permitted

ping: sendmsg: Operation not permitted

The screenshot below shows you how to setup iptables to allow a ping from or to your

machine.
[root@RHEL5 ~]# iptables -A INPUT -p icmp --icmp-type any -j ACCEPT

[root@RHEL5 ~]# iptables -A OUTPUT -p icmp --icmp-type any -j ACCEPT

The previous two lines do not allow other computers to route ping messages through your

router, because it only handles INPUT and OUTPUT. For routing of ping, you will need

to enable it on the FORWARD chain. The following command enables routing of icmp

messages between networks.
[root@RHEL5 ~]# iptables -A FORWARD -p icmp --icmp-type any -j ACCEPT

iptables firewall

92

11.4. practice: packet filtering
1. Make sure you can ssh to your router-system when iptables is active.

2. Make sure you can ping to your router-system when iptables is active.

3. Define one of your networks as 'internal' and the other as 'external'. Configure the router

to allow visits to a website (http) to go from the internal network to the external network

(but not in the other direction).

4. Make sure the internal network can ssh to the external, but not the other way around.
iptables firewall

93

11.5. solution: packet filtering
A possible solution, where leftnet is the internal and rightnet is the external network.
#!/bin/bash

first cleanup everything

iptables -t filter -F

iptables -t filter -X

iptables -t nat -F

iptables -t nat -X

default drop

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -P OUTPUT DROP

allow loopback device

iptables -A INPUT -i lo -j ACCEPT

iptables -A OUTPUT -o lo -j ACCEPT

question 1: allow ssh over eth0

iptables -A INPUT -i eth0 -p tcp --dport 22 -j ACCEPT

iptables -A OUTPUT -o eth0 -p tcp --sport 22 -j ACCEPT

question 2: Allow icmp(ping) anywhere

iptables -A INPUT -p icmp --icmp-type any -j ACCEPT

iptables -A FORWARD -p icmp --icmp-type any -j ACCEPT

iptables -A OUTPUT -p icmp --icmp-type any -j ACCEPT

question 3: allow http from internal(leftnet) to external(rightnet)

iptables -A FORWARD -i eth1 -o eth2 -p tcp --dport 80 -j ACCEPT

iptables -A FORWARD -i eth2 -o eth1 -p tcp --sport 80 -j ACCEPT

question 4: allow ssh from internal(leftnet) to external(rightnet)

iptables -A FORWARD -i eth1 -o eth2 -p tcp --dport 22 -j ACCEPT

iptables -A FORWARD -i eth2 -o eth1 -p tcp --sport 22 -j ACCEPT

allow http from external(rightnet) to internal(leftnet)

iptables -A FORWARD -i eth2 -o eth1 -p tcp --dport 80 -j ACCEPT

iptables -A FORWARD -i eth1 -o eth2 -p tcp --sport 80 -j ACCEPT

allow rpcinfo over eth0 from outside to system

iptables -A INPUT -i eth2 -p tcp --dport 111 -j ACCEPT

iptables -A OUTPUT -o eth2 -p tcp --sport 111 -j ACCEPT

iptables firewall

94

11.6. network address translation
11.6.1. about NAT
A NAT device is a router that is also changing the source and/or target ip-address in packets.

It is typically used to connect multiple computers in a private address range with the (public)

internet. A NAT can hide private addresses from the internet.

NAT was developed to mitigate the use of real ip addresses, to allow private address ranges

to reach the internet and back, and to not disclose details about internal networks to the

outside.

The nat table in iptables adds two new chains. PREROUTING allows altering of packets

before they reach the INPUT chain. POSTROUTING allows altering packets after they exit

the OUTPUT chain.

Use iptables -t nat -nvL to look at the NAT table. The screenshot below shows an empty

NAT table.
[root@RHEL5 ~]# iptables -t nat -nL

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

[root@RHEL5 ~]#

iptables firewall

95

11.6.2. SNAT (Source NAT)
The goal of source nat is to change the source address inside a packet before it leaves the

system (e.g. to the internet). The destination will return the packet to the NAT-device. This

means our NAT-device will need to keep a table in memory of all the packets it changed, so

it can deliver the packet to the original source (e.g. in the private network).

Because SNAT is about packets leaving the system, it uses the POSTROUTING chain.

Here is an example SNAT rule. The rule says that packets coming from 10.1.1.0/24 network

and exiting via eth1 will get the source ip-address set to 11.12.13.14. (Note that this is a

one line command!)
iptables -t nat -A POSTROUTING -o eth1 -s 10.1.1.0/24 -j SNAT \

--to-source 11.12.13.14

Of course there must exist a proper iptables filter setup to allow the packet to traverse from

one network to the other.

11.6.3. SNAT example setup
This example script uses a typical nat setup. The internal (eth0) network has access via

SNAT to external (eth1) webservers (port 80).
#!/bin/bash

iptables script for simple classic nat websurfing

eth0 is internal network, eth1 is internet

echo 0 > /proc/sys/net/ipv4/ip_forward

iptables -P INPUT ACCEPT

iptables -P OUTPUT ACCEPT

iptables -P FORWARD DROP

iptables -A FORWARD -i eth0 -o eth1 -s 10.1.1.0/24 -p tcp \

--dport 80 -j ACCEPT

iptables -A FORWARD -i eth1 -o eth0 -d 10.1.1.0/24 -p tcp \

--sport 80 -j ACCEPT

iptables -t nat -A POSTROUTING -o eth1 -s 10.1.1.0/24 -j SNAT \

--to-source 11.12.13.14

echo 1 > /proc/sys/net/ipv4/ip_forward

iptables firewall

96

11.6.4. IP masquerading
IP masquerading is very similar to SNAT, but is meant for dynamic interfaces. Typical

example are broadband 'router/modems' connected to the internet and receiving a different

ip-address from the isp, each time they are cold-booted.

The only change needed to convert the SNAT script to a masquerading is one line.
iptables -t nat -A POSTROUTING -o eth1 -s 10.1.1.0/24 -j MASQUERADE

11.6.5. DNAT (Destination NAT)
DNAT is typically used to allow packets from the internet to be redirected to an internal

server (in your DMZ) and in a private address range that is inaccessible directly form the

internet.

This example script allows internet users to reach your internal (192.168.1.99) server via

ssh (port 22).
#!/bin/bash

iptables script for DNAT

eth0 is internal network, eth1 is internet

echo 0 > /proc/sys/net/ipv4/ip_forward

iptables -P INPUT ACCEPT

iptables -P OUTPUT ACCEPT

iptables -P FORWARD DROP

iptables -A FORWARD -i eth0 -o eth1 -s 10.1.1.0/24 -j ACCEPT

iptables -A FORWARD -i eth1 -o eth0 -p tcp --dport 22 -j ACCEPT

iptables -t nat -A PREROUTING -i eth1 -p tcp --dport 22 \

-j DNAT --to-destination 10.1.1.99

echo 1 > /proc/sys/net/ipv4/ip_forward

